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In this paper, we consider a quadrature rule for Cauchy integrals of the form
I(wf ; s)=��1

&1 w(t) f (t)�(t&s) dt, &1<s<1, for a smooth density function f (t) and
Jacobi's weights w(t)=(1&t): (1+t);, :, ;>&1�2. Using the change of variables
t=cos y, s=cos x and subtracting out the singularity, we propose a trigonometric
quadrature rule. We obtain the error bounds independent of the set of values of
poles and construct an automatic quadrature of nonadaptive type. � 2001 Academic

Press

Key Words: Cauchy integral; quadrature rule; trigonometric interpolation; Jacobi
weight.

1. INTRODUCTION

In the recent literature, the numerical evaluation for the Cauchy prin-
cipal value (CPV) integral has received considerable attention because of
its importance in many problems of mathematical physics which can be
formulated as Cauchy singular integral equations. There are two basic
approaches for numerically approximating CPV integrals. The majority of
numerical methods are based on orthogonal polynomial approximations
[2, 4, 15, 19], while the other methods make use of piecewise polynomial
approximations [3, 6, 9, 12, 13]. It is well known that the former method
converges very fast for differentiable density functions (see [6]). To take
full advantage of the orthogonal polynomial approximation, the colloca-
tion points should be fixed at the zeros of the orthogonal polynomials. This
fact reduces the flexibility of the orthogonal polynomial approximations,
especially when the problem contains a system of integral equations defined
over several different intervals (see [3]). On the other hand, the piecewise
polynomial approximation does not have this restriction on the location of
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the collocation points. However, their implementation suffers from a lack
of efficient numerical algorithms for the computation of the quadrature
weights (see [6, 12]).

Hasegawa and Torii [7, 8] have developed automatic quadrature for-
mulae for CPV integrals and hypersingular integrals with the Legendre
weight function. They obtained the error estimate independent of the set of
values of poles. The rules of [7, 8], however, need the extra evaluation of
the density function and its derivatives for the set of values of poles.

We recently proposed an automatic quadrature based on trigonometric
interpolation (see [11]) for CPV integrals with the Legendre weight func-
tion. In [10], we also extend the approaches of [11] to CPV integrals with
the ultraspherical weight function w(t)=(1&t2)&1�2+*, *>&1�2, which
yields an error estimate independent of the set of values of poles.

In this paper, we develop a trigonometric quadrature for CPV integrals
with a general Jacobi's weight function w(t)=(1&t): (1+t);, :, ;> &1�2.
The proposed rule yields a stable algorithm for evaluating the quadrature
weights and the error bounds independent of the set of values of poles,
which enables us to construct an automatic quadrature of a nonadaptive
type.

The rest of the paper is organized as follows. In Section 2, we refor-
mulate CPV integrals as standard ones using the cosine transformation.
Section 3 describes trigonometric interpolation and gives the trigonometric
quadrature for the CPV integral with Jacobi's weight. In Section 4, we
estimate the asymptotic behavior of the quadrature weights. The error
estimate is discussed in Section 5.

2. STATEMENT OF THE PROBLEM

In this paper we consider the numerical evaluation of CPV integrals of
the form

I(wf ; s)=�|
1

&1
w(t)

f (t)
t&s

dt

= lim
= � 0 {|

s&=

&1
+|

1

s+== w(t)
f (t)
t&s

dt , |s|<1 , (2.1)

where f (t) is assumed to be smooth on [&1, 1] and w(t) is a weight func-
tion given by

w(t)=(1&t): (1+t); , (2.2)

where :, ;>&1�2.

19QUADRATURE RULE



To begin we make use of the change of variables t=cos y and s=cos x
in (2.1) and then obtain

I(w(cos } ) f (cos } ); cos x)=�|
?

0
w(cos y)

f (cos y) sin y
cos y&cos x

dy

=2:+;+1 |
?

0
sin:� y

2
cos;� y

2
h( y)&h(x)

cos y&cos x
dy

+h(x) q0(x) , x # (0, ?), (2.3)

where h( y)= f (cos y), :� =2:+1, ;� =2;+1, and

q0(x)=2:+;+1 �|
?

0

sin:� y
2

cos;� y
2

cos y&cos x
dy .

We rewrite Eq. (2.3) as

I(w(cos } ) h; cos x)=2:+;+1Q(h; x)+h(x) q0(x) , (2.4)

where h( y)= f (cos y) and

Q(h; x)=|
?

0
sin:� y

2
cos;� y

2
h( y)&h(x)

cos y&cos x
dy .

For :, ;>&1, q0(x) satisfies

q0(x)=? cot(?:) w(cos x)

&2:+; 1(:) 1(1+;)
1(1+:+;)

F\1, &:&;; 1&:;
1&cos x

2 + , (2.5)

where F( } , } ; } , } ) is the hypergeometric function and 1(z) the gamma
function (see, e.g., [18]). The problem of evaluating the CPV integral
I(wf; s) of (2.1) is now reduced to evaluating the integrals Q(h; x) of (2.4).

3. TRIGONOMETRIC INTERPOLATION METHODS

Following the procedure of [10, 11], we approximate h( y) of (2.4) by
the sum of cos ky,

pN( y)= :"
N

k=0

aN
k cos ky , 0� y�? , (3.1)
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where aN
k are determined to satisfy the interpolation conditions

h(?j�N)= pN(?j�N) , 0� j�N (3.2)

and given as follows [1, 10, 11]:

aN
k =

2
N

:"
N

j=0

h(?j�N) cos(?jk�N) , 0�k�N . (3.3)

Here the coefficients aN
k can be computed by using the fast cosine trans-

form (FCT) [5]. The double prime of (3.1) denotes the summation whose
first and last terms are halved. We now approximate h( y) and h(x) of (2.4)
by pN( y) and pN(x) of (3.1), respectively, and then obtain the tri-
gonometric quadrature rule for Q(h; x)

QN(h; x)=Q( pN ; x)

= :"
N

k=0

aN
k Jk (x) , (3.4)

where

Jk (x)=|
?

0
sin:� y

2
cos;� y

2
cos ky&cos kx
cos y&cos x

dy , k=0, 1, ... . (3.5)

Then, we clearly see that

J0 (x)=0.

By the definition of the beta function (see, e.g., [16]), we also see that

J1(x)=2 |
?�2

0
sin2(:+1)&1 y cos2(;+1)&1 y dy

=
1(:+1) 1(;+1)

1(:+;+2)
.

From the following recurrence relation

cos(k+2) y&cos(k+2) x
cos y&cos x

+
cos ky&cos kx
cos y&cos x

=2 cos x
cos(k+1) y&cos(k+1) x

cos y&cos x
+2 cos(k+1) y,
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we then get the three-term recurrence relation for Jk(x)

J0 (x)=0

J1(x)=
1(:+1) 1(;+1)

1(2+:+;)
(3.6)

Jk+2 (x)&2 cos xJk+1 (x)+Jk( x)=dk+1 , k�0,

where the sequence dk is given by

dk=2 |
?

0
sin:� y

2
cos;� y

2
cos ky dy

=4 |
?�2

0
sin:� y cos;� y cos 2ky dy , k=1, 2, ... . (3.7)

To compute the sequence dk , we note that the following identity

cos 2ky= 1
2 [(cos y+i sin y)2k+(cos y&i sin y)2k]

= :
k

j=0 \
2k
2j + (&1)k& j cos2 j y sin2k&2j y. (3.8)

Substituting (3.8) into (3.7) yields

dk=4 :
k

j=0
\2k

2j + (&1)k& j Ck& j, j , (3.9)

where the terms Cm, n are defined by

Cm, n=|
?�2

0
sin2m+:� y cos2n+;� y dy, m, n�0, (3.10)

which gives

Cm, n= 1
2 B(m+:+1, n+;+1)

=
1(m+:+1) 1(n+;+1)

21(m+n+:+;+2)
, (3.11)

where B( } , } ) is the Euler beta function. Hence the sequence dk is given by

dk=2 :
k

j=0
\2k

2j + (&1)k& j B(k& j+:+1, j+;+1). (3.12)
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Using the quadrature scheme QN(h; x) of (3.4), we now get a new
integration formula

IN(w(cos } ) h; cos x)=2:+;+1 QN(h; x)+h(x) q0(x)

=2:+;+1 :"
N

k=0

aN
k Jk (x)+ f (cos x) q0(x), (3.13)

where h( y)= f (cos y) and the coefficients aN
k and Jk(x) are given in (3.3)

and (3.6), respectively, and q0(x) is given by (2.5).
In the rest of this section, we will describe an automatic quadrature algo-

rithm of nonadaptive type which is constructed from the sequence of the
truncated cosine series. Here and henceforth we assume that N is of the
form 2n; n=2, 3, ... . Following the procedure of [10, 11, 17], we first out-
line the algorithm for computing the sequence of the truncated cosine series
[ pN , p5N�4 , p3N�2].

For _=2, 4, set

vN�_
j ={

8? \ j+
3

16+<N

4? \ j+
3
8+<N

if _=4

if _=2.

Then we see that [vN�_
j ], 0� j<N�_, is a set consisting of the N�_ zeros

of cos((N�_) y)&cos(3?�(2_)). We now represent the polynomials pN+N�_ ,
_=2, 4, interpolating h( y) at the nodes vN�_

j , 0� j<N�_, _=2, 4, as well
as at the nodes ?j�N, 0� j�N, in the Newton form:

pN+N�_ ( y)& pN ( y)

= :
N�_

k=1

bN�_
k (cos((N&k) y)&cos((N+k) y)), (3.14)

where coefficients [bN�_
k ] are determined to satisfy the condition

h(vN�_
j )= pN+N�_ (vN�_

j ), 0� j<
N
_

, _=2, 4. (3.15)

It must be noted that the interpolating conditions (3.15) are the same as
those of the scheme of Hasegawa and Torii [7], and hence we can use the
FFT [17] for evaluating the coefficients bN�_

k (see [7, 17] for details).
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Set aN+N�_
k , _=2, 4, by

aN+N�_
k ={

aN
k , 0�k<N&N�_,

(3.16)

aN
k +bN�_

N&k , N&N�_�k<N,

aN
N

2
, k=N,

&bN�_
k&N , N<k�N+N�_.

Then pN+N�_( y) of (3.14) can be written as

pN+N�_ ( y)= :$
N+N�_

k=0

aN+N�_
k cos ky, (3.17)

where the prime denotes the summation whose first term is halved.
The corresponding quadrature rules IN+N�_(w(cos } ) h; cos x), _=2, 4,

based on the polynomial pN+N�_( y) of (3.17) are given as follows,

IN+N�_(w(cos } ) h; cos x)= :$
N+N�_

k=0

aN+N�_
k Jk(x)+ f (cos x) q0(x), (3.18)

where h( y)= f (cos y) and Jk(x) and q0(x) are given by (3.6) and (2.5),
respectively.

4. ASYMPTOTIC BEHAVIOUR OF THE QUADRATURE WEIGHTS

In this section, we consider the asymptotic behaviour of the sequence dk

of (3.7) and a related sequence with Jk(x).

Lemma 4.1. Let dk be defined by (3.7). Let :� =2:+1, ;� =2;+1, and
&1

2<:, ;<1. Then we have the bounds

|dk |=O \1
k+ (4.1)

for sufficiently large k.

Proof. Replacing y by y+ ?
2k in the integral (3.7) and taking the mean

value of the new and old integrals, we see that

dk=4 |
?�2

0
sin:� y cos;� y cos 2ky dy

=&4 |
?�2&?�(2k)

&?�(2k)
sin:� \ y+

?
2k+ cos;� \ y+

?
2k+ cos 2ky dy

=2(A1+A2+A3),
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where

A1=|
?�2

?�2&h
sin:� y cos;� y cos 2ky dy,

A2=&|
0

&h
sin:� ( y+h) cos;� ( y+h) cos 2ky dy,

A3=|
?�2&h

0
[sin:� y cos;� y &sin:� ( y+h) cos;� ( y+h)] cos 2ky dy,

h=
?
2k

.

The estimations of the integrals A1 and A2 can be achieved as follows.

|A1 |�|
?�2

?�2&h
sin:� y cos;� y dy

=|
?�2

?�2&h
cos;� y sin y sin2: y dy

� max
y # [?�2&h, ?�2]

sin2: y |
sin h

0
t;� dt

=
maxy # [?�2&h, ?�2] sin2: y

;� +1
sin;� +1 h

=O \ 1
k2(;+1)+ ,

where we used the change of variables t=cos y in the second equality
above. Similarly, by using the change of variables t=sin y, we get
A2=O(1�k2(:+1)).

By the triangle inequality and the fundamental theorem of calculus, we
bound the integral A3 as follows.

|A3 |�|
?�2&h

0
|sin:� y cos;� y&sin:� ( y+h) cos;� ( y+h)| dy

�|:� | A1
3+|;� | A2

3 ,
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FIG. 1. The partition of the region of the integral A1
3 with h= ?

2k.

where

A1
3=|

?�2&h

0
|

y+h

y
cos;� y sin:� &1 t cos t dt dy

A2
3=|

?�2&h

0
|

y+h

y
sin:� ( y+h) cos;� &1 t sin t dt dy .

To estimate the integrals A1
3 and A2

3 , we split the region of these integrals
as in Fig. 1 and apply Fubini's theorem. We then get

A1
3=D1+D2+D3+D4+D5 ,

where

D1=|
h

0
|

t

0
cos;� y sin:� &1 t cos t dy dt

D2=|
2h

h
|

t

t&h
cos;� y sin:� &1 t cos t dy dt

D3=|
?2&h

?2&2h
|

t

t&h
cos;� y sin:� &1 t cos t dy dt

D4=|
?2&h

?2&2h
|

y+h

?2&h
cos;� y sin:� &1 t cos t dt dy

D5=|
?2&2h

2h
|

t

t&h
cos;� y sin:� &1 t cos t dy dt.
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We now estimate each integral Di as follows.

D1� max
y # [0, h]

cos;� y |
h

0
|

t

0
dy sin:� &1 t cos t dt

� max
y # [0, h]

cos;� y |
h

0
t sin:� &1 t dt

�C:� max
y # [0,h]

cos;� y |
h

0
t:� dt

=
C:� maxy # [0,h] cos:� y

:� +1
h:� +1

=O \ 1
k:� +1+,

where C:� =1 if :� �1 and C:� =( 2
?):� &1 if :� <1 and we used the inequality

2
? t<sin t<t in the third inequality above. To estimate the integral D2 , we
set the inner integral of D2 as

F(t)=|
t

t-h
cos;� y dy.

Then we see that F (t)=O(1�k), because cos;� y�1 and ;� >0. Thus the
bounds for D2 are as follows.

D2=|
2h

h
F(t) sin:� &1 t cos t dt

=O \1
k+ |

2h

h
sin:� &1 t cos t dt

=O \1
k+

1
:�

(sin:� 2h&sin:� h)

=O \1
k+

1
:�

(sin:� 2h+sin:� h)

=O \ 1
k:� +1+ ,
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where we used the inequality 2
? t�sin t�t in the last inequality above. If

;�0,

max
t # [?�2&2h, ?�2&h] |

t

t-h
cos;� y dy�|

?�2&h

?�2&2h
cos;� y dy

�|
?�2

?�2&2h
(1-sin y); (1+sin y); cos y dy

�
maxy # [?�2&2h, ?�2] (1+sin y);

;+1

_(1&cos 2h);+1

=O \ 1
k2(;+1)+ .

For the case ;�0, the above procedure gives

max
t # [?�2-2h, ?�2-h] |

t

t-h
cos;� y dy�|

?�2-2h

?�2-3h
cos;� y dy

=O \ 1
k2(;+1)+ .

Thus, we have that

D3=|
?�2&h

?�2&2h
|

t

t-h
cos;� y dy sin:� &1 t cos t dt

� max
t # [?�2&2h, ?�2]

sin:� &1 t max
t # [?�2&h, ?�2-2h] |

t

t-h
cos;� y dy |

?�2&h

?�2&2h
cos t dt

=O \ 1
k2(;+1)+ .

By the mean value theorem, we can estimate the integral D4 as follows.

D4=|
?�2&h

?�2&2h
cos;� y |

y+h

?�2-h
sin:� &1 t cos t dt dy

�sin h |
?�2&h

?�2&2h
cos;� y dy |

?�2

?�2&h
sin:� &1 t dt

=sin h O \ 1
k2;+1+ |

?�2

?�2&h
sin:� &1 t dt

=O \ 1
k2(;+1)+ .
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To estimate the integral D5 , we also set the inner integral of D5 as

F(t)=|
t

t-h
cos;� y dy.

Then we see that F(t)�h, because ;� >0 and cos;� y�1. Thus we have

D5�h |
?�2-2h

2h
sin:� -1 t cos t dt

�
h
:�

(cos:� 2h&sin:� 2h) ,

=O(h).

Collecting the bounds of each integral Di , we then have

|A1
3 |=O \1

k+ ,

since min(2(:+1), 2(;+1), 1)=1. By a similar procedure, we can get the
bounds for A2

3 as follows:

|A2
3 |=O \1

k+ .

Finally, we summarize the above estimations and get the desired bounds
(4.1). K

Now, by using the identity [7, (A.3)],

cos(k+1) y&cos(k+1) x
cos y&cos x

=2 :$
k

j=0

sin(k& j+1) x
sin x

cos jy, k�0,

we can write Jk(x) defined in (3.5) as

Jk+1 (x)= 2 :$
k

j=0

sin(k& j+1) x
sin x

dj , k�0, (4.2)

where dj are defined in (3.7).

Lemma 4.2. Let Jk (x) and dk be given in (4.2) and (3.12), respectively.
Then we have

Jm&1 (x)&Jm+1 (x)=&4 :"
m

j=0

dj cos(m& j) x, (4.3)
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where d0=J1 (x). Further we have the following estimation

|Jm&1 (x)&Jm+1 (x)|=O(1+log(m+1)). (4.4)

Proof. The representation (4.3) follows directly from the expression
(4.2) by defining d0=J1 (x). The relation (4.3) and the bounds (4.1) give

|Jm&1 (x)&Jm+1 (x)|�4 :
m

j=0

|dj |

�C(:, ;) \1+ :
m

j=2

1
j+

�C \1+|
m

0

1
x+1

dx+
=O(1+log(m+1)).

Thus we proved the estimation (4.4). K

5. ERROR ESTIMATES

In this section, we shall derive error bounds for the proposed quadrature
rule of (3.13). Let =} denote the ellipse in the complex z=x+iy with foci
(x, y)=(&1, 0), (1, 0), and semimajor axis a= 1

2 (}+}&1) and semiminor
axis b= 1

2 (}&}&1) for a constant }>1.
Assume that f (z) is single-valued and analytic inside and on =} . Then, by

(3.2) of [7], we have

h(x)& pN(x)= f (cos x)& pN (x)

=
1

2?i �
=}

|N+1(cos x) f (z)
(z&cos x) |N+1(z)

dz

=&2 :$
�

k=0

V N
k ( f ) sin y sin N y cos ky, (5.1)

where |N+1(t)=TN+1(t)&TN&1(t)=2(t2&1) UN&1 (t), N�1 and

V N
k ( f )=

1
?i �

=}

f (z)

|N+1 (z) - z2&1 (z+- z2&1)k
dz, k�0. (5.2)

Here, Tk (t) and Uk (t) denote the Chebyshev polynomials of the first and
second kind, respectively.
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Using (5.1), we now define the error for the approximate integral
IN (w(cos } ) h; cos x) as

EN (h; x)=I(w(cos } ) h; cos x)&IN (w(cos } ) h; cos x)

=&2:+;+2 :$
�

k=0

V N
k ( f ) 0N

k (x), (5.3)

where h( y)= f (cos y) and

0N
k (x)=|

?

0
sin:� y

2
cos;� y

2
sin y sin Ny cos ky&sin x sin Nx cos kx

cos y&cos x
dy. (5.4)

Then we have the following lemma.

Lemma 5.1. (1) Let 0N
k (x) be defined by (5.4). Then 0N

k (x) can be
rewritten as

0N
k (x)= 1

4 (JN+k&1 (x)&JN+k+1 (x)\(J |N&k| &1 (x)&J |N&k|+1 (x)), (5.5)

where the plus sign is taken if N&k�1 and the minus sign if N&k<1, and
Jk(x), k�0, are given by (3.6).

(2) Further, 0N
k (x) are bounded by

|0N
k (x)|�CG(N, k), k�0, (5.6)

where C=C(:, ;) is a constant dependent of :, ; and G(N, k) is defined by

G(N, k)=1+log((N+k+1)( |N&k|+1)). (5.7)

Proof. The first identity (5.5) is obtained by the definition of Jk (x) of
(3.5) and the relation

4 sin y sin Ny cos ky=cos(N+k&1) y&cos(N+k+1) y

+cos(N&k&1) y&cos(N&k+1) y.

The bound (5.6) follows from inequality (4.4) of Lemma 4.3 and identity
(5.5). K
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From (5.3) and (5.6), we have the following lemma.

Lemma 5.2. Let N=2n, n=2, 3, ... , and assume that f (z) is single-valued
and analytic inside and on =\ . Let h( y)= f (cos y). Then the error EN(h; x)
of (5.3) is bounded independent of x by

|EN (h; x)|�C :$
�

k=0

G(N, k) | V N
k ( f )|, (5.8)

where V N
k ( f ) and G(N, k) are given by (5.2) and (5.7), respectively, and the

constants C=C(:, ;) are dependent of : and ;.

For the function h( y)= f (cos y), we define

EN+N�_ (h; x) :=I(w(cos } ) h; cos x)

&IN+N�_ (w(cos } ) h; cos x), (5.9)

where _=2, 4. Then, by the same arguments as in [7], and the previous
results, we get the following error bounds for EN+N�_(h; x).

Lemma 5.3. Let N=2n, n=2, 3, ..., and assume that f (z) is single valued
and analytic inside and on =\ . Further, let V N+N�_

k ( f ), _=2, 4, denote a
contour integral defined by

V N+N�_
k ( f )=

1
?i �

=\

f (z) dz

|N+1 (z)[TN�_ (z)&cos 2?;_ ] - z2&1 wk
, k�0,

(5.10)

where w=z+- z2&1 and |w|>1 if z � [&1, 1]. Then, for h( y)= f (cos y),
we have

|EN+N�_ (h; x)|�C :$
�

k=0

|V N+N�_
k ( f )| \ |cos 2?;_ | G(N, k)

+\G \N+
N
_

, k++G \N&
N
_

, k+++ , (5.11)

where ;4=3�16 and ;2=3�8.

Finally, to estimate the bounds of V N
k ( f ) of (5.2) and V N+N�_

k ( f ) of
(5.10), we follow the procedure of [7, 11]. Suppose that f (z) is a
meromorphic function which has M simple poles at the points zm ,
m=1, 2, ..., M, outside =\ with residues Res f (zm). Define

r= min
1�m�M

|zm+- z2
m&1|>1. (5.12)
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Then, from [11, (3.36) and (3.37)], (5.2) and (5.10), we see that }<r and

|V N
k ( f )|�r&k |V N

0 ( f )|=O(r&k&N) (5.13)

and

|V N+N�_
k ( f )|�r&k |V N+N�_

0 ( f )|=O(r&k&N&N�_). (5.14)

Further, from [7, (3.17) and (3.20)], we can see that

|V N
0 ( f )|t

r
r2&1

|aN
N | (5.15)

and

|V N+N�_
0 ( f )|t |aN+N�_

N+N�_ |
4r

r2&1
, (5.16)

where aN
N �2 and aN+N�_

N+N�_ are the coefficients of the last term in the truncated
cosine series (3.1) and (3.17), respectively. The constant r defined in (5.12)
can be estimated from the asymptotic behavior of [aN

k ] [17].
Define a function H(n, r) by

H(n, r)=
r+1
r&1

log(n+1) e1�2+2
(n+2)(r&1)&1

rn(r&1)2 . (5.17)

Then we see that

H(n, r)=O(1+log(n+1)).

By using (5.13)�(5.16) and Lemmas 5.2�5.3, we obtain the following error
estimations.

Theorem 5.4. Let N=2n, n=2, 3, ..., and suppose that f (z) is a
meromorphic function which has M simple poles at the points zm ,
m=1, 2, ..., M outside =\ with residues Res f (zm). Let r=min1�m�M

|zm+- z2
m&1|>1 and h( y)= f (cos y). Then the errors EN (h; x) and

EN+N�_(h; x), _=2, 4, defined in (5.3) and (5.9), respectively, can be
bounded independent of x as follows;

|EN(h; x)|�C
r

r2&1
|aN

N | H(N, r) (5.18)
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and

|EN+N�_ (h; x)|�C
4r

r2&1
|aN+N�_

N+N�_| (H(N+N�_, r)

+H(N&N�_, r)+|cos 2?;_ | H(N, r)), (5.19)

where H(n, r) are given by (5.17) and the constants C are dependent of :
and ;.

Proof. Substituting the inequality (5.13) into (5.8) yields

|EN (h; x)|�C |V0( f )| :$
�

k=0

G(N, k)
rk

�|V0( f )| \ :$
N

k=0

G(N, 0)
rk +2 :

�

k=N+1

k+1
rk + , (5.20)

where we used the facts that the function G(N, k) of (5.7) satisfies

G(N, k)�G(N, 0), 0�k�N

and

G(N, k)�2(k+1) , k=N+1, N+2, ... .

Since

:$
N

k=0

1
rk�

r+1
2(r&1)

(5.21)

and

:
�

k=N+1

k+1
rk =

(N+2)(r&1)&1
rN(r&1)2 , (5.22)

we substitute (5.21) and (5.22) into (5.20) and then get

|EN (h; x)|�C |V0 ( f )| H(N, r),

where H(n, r) are given by (5.17). Thus from the asymptotic behaviour of
V0 ( f ) given in (5.15), we get the desired inequality (5.18). By a procedure
similar to that above and using (5.14) and (5.16), we can get the required
inequality (5.19). K
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We remark that the error estimates (5.18) and (5.19) for the quadrature
rules EN(h; x) and EN+N�_(h; x), respectively, are independent of the values
of poles x. This fact enables us to use the same polynomials pN ( y) and
pN+N�_ ( y) common to the integrals I(w(cos } ) h; cos x) for a set of values
of poles x.

REFERENCES

1. C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic
computer, Numer. Math. 2 (1960), 197�205.

2. G. Criscuolo, A new algorithm for Cauchy principal value and Hadamard finite-part
integrals, J. Comp. Appl. Math. 78 (1997), 255�275.

3. R. D. Kurtz et al., The numerical solution of Cauchy singular integral equations with
application to fracture, Int. J. Fracture 66 (1994), 139�154.

4. F. Erdogan et al., Numerical solution of singular integral equations, Mech. Fracture 1
(1973), 368�425.

5. W. H. Press et al., in ``Numerical Recipes in C,'' 2nd ed., Cambridge University Press,
Cambridge, UK, 1992.

6. A. Gerasoulis, Piecewise-polynomial quadratures for Cauchy singular integrals, SIAM
J. Numer. Anal. 23 (1986), 891�902.

7. T. Hasegawa and T. Torii, An automatic quadrature for Cauchy principal value integrals,
Math. Comp. 56 (1991), 741�754.

8. T. Hasegawa and T. Torii, Hilbert and Hadamard transforms by generalized Chebyshev
expansion, J. Comp. Appl. Math. 51 (1994), 71�83.

9. V. V. Ivanov, ``The Theory of Approximate Methods and Their Applications to the
Numerical Solution of Singular Integral Equations,'' Noordhoff, Leyden, 1976.

10. P. Kim and U. J. Choi, A quadrature rule for weighted Cauchy integrals, J. Comp. Appl.
Math., to appear.

11. P. Kim and U. J. Choi, A quadrature rule of interpolatory type for Cauchy integrals,
J. Comp. Appl. Math., to appear.

12. P. Kim and S. Lee, A piecewise linear quadrature of Cauchy singular integrals, J. Comp.
Appl. Math. 95 (1998), 101�115.

13. I. F. Lotz, ``Mathematical Improvement of Method for Computing Poisson Integrals
Involved in Determination of Velocity Distribution on Airfoils,'' NACA, Report 2451,
1951.

14. G. Monegato, Convergence of product formulas for the numerical evaluation of certain
two-dimensional Cauchy principal value integrals, Numer. Math. (1984), 161�173.

15. D. F. Paget and D. Elliott, An algorithm for the numerical evaluation of certain Cauchy
principal value integrals, Math. Comp. 17 (1972), 373�385.

16. W. Rudin, ``Principles of Mathematical Analysis,'' 1976.
17. T. Torii, T. Hasegawa and H. Sugiura, An algorithm based on the fft for a generalized

Chebyshev interpolation, Math. Comp. 54 (1990), 195�210.
18. F. G. Tricomi, On the finite Hilbert transform, Quart. J. Math. 2 (1951), 199�211.
19. S. Welstead, ``Orthogonal Polynomials Applied to the Solution of Singular Integral Equa-

tions,'' Ph.D. thesis, Purdue Univ., 1982.

35QUADRATURE RULE


	1. INTRODUCTION 
	2. STATEMENT OF THE PROBLEM 
	3. TRIGONOMETRIC INTERPOLATION METHODS 
	4. ASYMPTOTIC BEHAVIOUR OF THE QUADRATURE WEIGHTS 
	FIG. 1 

	5. ERROR ESTIMATES 
	REFERENCES 

